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D Y N A M I C  E D G E  A N G L E S  OF W E T T I N G  U P O N  S P R E A D I N G  OF A D R O P  

O V E R  A SOLID S U R F A C E  

O. V. Voinov UDC 532.5 

The hydrod~.mamic free-boundary problem of the axisymmetric spreading of a viscous-fluid drop 
over the smooth surface of a solid under the action of capillary forces and under the conditions 
of weak gravitation is considered. For finite inclination angles of the free surface and small 
capillary numbers, the problem is reduced to the simpler hydrodynamic problem in a region with 
known boundary by the asymptotic method. An expression for the dynamic edge angle of the 
drop is obtained. It is shown that in addition to the local inclination angle of the boundary near 
the contact line of three phases, one drop has several dynamic edge angles. These angles are 
calculated for small Reynolds and Bond numbers. 

1. T h e  P r o b l e m  of  Drop  D y n a m i c s  for Large  Inc l ina t ion  Angles  o f  the  Free Boundary .  
We consider axisymmetric flows in a drop on a planar solid surface under the action of capillary forces which 
obey the equation of motion for an incompressible viscous fluid: 

pdu/dt = - V p +  pg + pAu,  d ivu  = 0. (1.1) 

The problem is posed in an "external" region remote from the traveling contact line of three phases, which is 
possible if there is a large parameter In (ho/hm) >> 1 (h0 is the characteristic maximum height of the fluid-gas 
interface So over the solid surface, and h,n is the minimum height of this interface near the contact line). 

The base of the drop is a cKcle of unknown varied radius to(t), and the height of the boundary is h = 0 
along the circumference of the circle (the contact line) equal to zero in the macroscopic description on a large 
scale h0. 

We consider a planar cross section of the drop near the point x0 of the contact line. We put the arc 
Ll(xe) of the circumference (Fig. 1), which is orthogonal to the tangent plane to So at the point xe and the 
planar surface of the solid, in correspondence with each point xe of the free surface So with coordinates r and 
y = h. In this manner, we separate the small fluid volume near the contact (wetting) line bounded from the 
remaining fluid by a surface of revolution with the generatrix Ll(x~). 

The characteristic height h0 separates the external, and internal regions used in the asymptotic 
description. In the internal region (h << h0), the Reynolds numbers based on the distance h of the interface 
from the solid are small. For the case of a small capillary number Ca, the universal asymptotic behavior 
of the inclination angle of the interface a(h) [1-3] exhibits in the large-distance limit from the wetting line 
(h/hm --, 

1 7 d~ sin c~ h /zv0 
j Q - - - ~ + C a l n  .sma,-Caln-U-,hm C a =  o" , ICa[<<l , In(h/h~) >> l, h<<ho.  (1.2) 

r 

Here v0 = dro/dt is the velocity of the wetting line and a and p are the coefficients of surface tension and 
dynamic viscosity. For the fluid-gas interface, we have Q = sin a ( a  - s i n  a cos a) -1. The quantities am, a . ,  
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Fig. 1 

and h~n are given in [1-4], am is the macroscopic angle, and h~ is the magnitude of the order of the minimal 
scale h,n of the distance of the free boundary from the solid surface within the framework of the macroscopic 
model used. The quantity h~ can be of the order of the molecular size, which is supported by the analysis of 
the experiments in [1, 2] and by the conclusion of [3, 5, 6] that the precursory wetting film forms only at very 
small dynamic angles. 

We note that Eq. (1.2) corresponds to the second-order theory with respect to Ca. The term linear in 
Ca on the left-hand side of (1.2) is similar, for example, to the term in the expression f + Car  = Ca + . . . ,  
which takes into account the quadratic corrections to f for small Ca. 

In the second approximation with respect to the small parameter Ca, the condition for the inclination 
angle of the boundary which corresponds to (1.2) can be set in the external problem [4]: 

a - a o - 2 C a Q o l n ( h o / h ) + . . . ,  h /ho-*O,  Qo=Q(ao) ,  ln(ho/h)<<h(ho/h,n) .  (1.3) 

We note that a0(h0) is determined by (1.2), and the above inequality restricts the limiting transition in (1.3). 
The first-order approximation with respect to Ca for the interface in the external region corresponds to O(1). 

Excluding the small region near the contact line on the arc Ll(xr which bounds the region, from 
consideration, we set the velocity u = v(~ + . . . ,  x E Ll(xe), xt -* x0, where x0 corresponds to the drop 
edge (h -- 0) and v (~ is the velocity of the creeping flow of a fluid inside the angle c~ with a moving side. 

At the solid surface, the velocity equals zero: 

u = 0 ,  y = 0 .  

Together with equations of motion, we use this condition only at great distances from the contact line. 
At the fluid-gas interface So, the tangent stress pr equals zero, the normal fluid velocity coincides with 

the surface velocity w, and the mean curvature H corresponds to the normal-stress jump: 

( u n )  = w,  p ,  = 0, x e So; (1.4)  

2all  = p,, + Po, x E So. (1.5) 

Here p0 is the gas pressure and pn is the normal stress in the fluid. 
As shown in [7], the allowance for the second-order terms with respect to Ca in the asymptotic behavior 

of the inclination angle of the free boundary provides better accuracy of the solution for the case v0 > 0 if the 
angle ~ is smaller than the critical angle (~/c "~ 129~ For a > ~k, only the main approximation with respect 
to Ca is justified. 

2. A s y m p t o t i c  Desc r ip t ion  of Drop  Dynamics .  It is known that, for a small capillary number 
Ca, there is a solution of the unsteady problem of drop spreading according to which the shape of the free 
surface of the drop is nearly spheroidal [1]. In the first approximation with respect to Ca, the free boundary 
in the external problem for (1.1) coincides with a segment of the sphere. In the second approximation, its 
shape can be determined by taking into account viscous stresses (Ca # 0). We find the radius of the surface 
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Fig. 2 

in the polar coordinates R and O: 

R =/to + RI(0) +..., IRll <</to. (2.1) 

Here 0 is the polar angle, 0 -- 0 is the axis of symmetry, and y = a0 - R0 is the center of the polar system. 
The time t can enter Eq. (2.1) as a parameter. For a sufficiently large time (t --+ co), the smallness of the 
ratio R1/Ro is ensured by the small capillary number (Ca ~ 0) and the predominant energy dissipation near 
the wetting line, which causes the dynamic wetting angle [I]. The details of the initial conditions (t -- 0) are 
insignificant. Only the drop volume V and the initial radius r0(0) of the wetting line, which should be limited, 
are important. 

We assume that a sphere of radius R0 passes through the perimeter [r = r0(t)] of the drop base, so 
that 

Rz(0) = 0, O = 00. (2.2) 

The radius of the drop base is r0 = / t o  sin 00. To determine the sphere, it is required to set the second condition 
in addition to (2.2). We consider three variants of this condition. 

1. The radius of the sphere is equal to the radius of curvature of the drop surface at the axis of 
symmetry determined by the normal stress p,  in the fluid and the pressure p0 in the gas: 

I ~ P. + p0 = - 2  - - .  (2.3) 
0=0 R0 

2. The height a0 of the sphere segment is equal to the height of the drop (h at 0 = 0): 

R1 = 0, 0 = 0. (2.4) 

3. The volume V of the drop is equal to the volume of the sphere segment: 

( ~a0 r02 + 5 a  = V. (2.5) 

If the shape of the drop is a segment of the sphere, the three spheroidal segments coincide. 
It is required to solve the problem [i, 8] of a fluid flow inside the spheroidal segment of height a0 = 

R0(1 - cosa0) with varied wetting angle 00 = a0(t) on the solid surface (Fig. 2). According to (1.4), the 
tangent stress on the spheroidal segment equals zero, whereas the normal velocity UR varies in proportion to 
the velocity of the segment edge v0 and is proportional to h: 

2r0v0 dro 
PRo=O, UR=r2 o+a2 o(ao-2h) for R=R0 ,  0 < 0 0 ,  v 0 = - ~ ,  h=R0(cos0 -cos00 ) .  (2.6) 

On the solid base of the segment, the velocity equals zero: 

u = 0  for RcosO=RocosOo, 0<00-  (2.7) 

The normal stress pn on the sphere is found by solving the problem of viscous-fluid dynamics (1.1), 
(2.6). and (2.7) inside the spreading spheroidal segment (the equation of spreading is given below). In this 



problem, only the flows with small Reynolds numbers should be considered: Re = aovo/v < i (in the case 
of small angles aRe ~ 1). For large Reynolds numbers (Re >> 1), the sphere approximation cannot be used, 
since appreciable deviations of the shape of the drop surface from a sphere are possible owing to the action 
of inertial forces despite the smallness of the capillary number Ca. 

The normal stress on the sphere is of the form 

g voP(O) + const, P(O) = P(O, no, Re, t). (2.8) Pn -- PRR = -~0 

Generally, the dimensionless stress P in (2.8) depends on the angle a0, the Reynolds number Re, and the 
time. For a finite Reynolds number, it is apparent that the prehistory of the nonstationary flow inside the 
spheroidal segment is of importance at each moment. For the case of a small Reynolds number (Re << 1), the 
explicit P(t) dependence is lacking. 

To asymptotically match the outside solution and the inside asymptotics in the general form, it is 
sufficient to take into account only the dependence of P on 0, assuming the dependence on time. The 
perturbation of the radius R1 can be determined from the Laplace condition (1.5) written in the following 
linearized form: 

d s inodR ,  (Pn+po  ~ )  2 d-O ~ + 2R1 sin 0 = ~ + R 0 sin 0 = f(O). (2.9) a 

The solution of Eq. (2.9), which is regular at the point 0 = 0, contains one arbitrary constant D: 

0 

R l = c o s O  D +  sin~cos 2 
0 0 

The function f(0) includes a second arbitrary constant D': 

,_- [, + (2.11) 

We note that the perturbation of the radius is quite small (R1 << a0), and Eq. (2.9) is valid if the 
stress changes little in the central region of the drop compared to the capillary head a/Ro and the inclination 
angle of the free surface at the drop edge differs only slightly from the angle on the sphere: 

o" 
[pn(0 ) -p . (0 ) [<<R0 for 0 0 - 0 ~ 0 0 ,  l a - 0 [ < < a 0  for 00 -0<<00 .  (2.12) 

Condition (2.12) is violated in the limit 0 --~ 00, which is regarded as an intermediate angle restricted by small 
perturbations of the angle. 

The perturbation of the inclination angle of the tangent near the drop edge, which enters the boundary 
condition (1.3), is of primary interest: 

1 dR1 
+ . . . ,  0 ~ 00. (2.13) 

a - ao = Ro dO 

Determining the constants in (2.10) and (2.11) with allowance for (2.2) and (2.3)-(2.5), transforming the 
integrals in the expression for R1, and using (2.13), we find the following formulas for the inclination angle a 
of the free boundary near the drop edge: 

0 

Ro / COSc~s O0 (Pn(O) 1. t ~ - a o =  -pn(O)) s inOdO+. . .  ( 0 4 0 o = a o ) ;  (2.14) 
a sin c~o 

0 .o j{ ,[ ( , ~ 
2. a-aO=~sin~o cosO-(l+cosao l-cosOIn cot~tan a sinOdO+... 

0 

(o Oo1, A p .  = p.(O) - p.(O); 
(2.15) 
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a0 , / ( ,  )A,. 
, 3 .  a - a 0  = s i n  a 0  2 - -  - 1 dh + . . .  (h ---* 0 ) .  ( 2 . 1 6 )  

a 0  o" 

For a0 ~ r /2,  the applicability of (2.14) is limited. 
For the case of stresses determined by a viscous flow according to (2.8), the right-hand sides of (2.14)- 

(2.16) are proportional to the small number Ca. 
We verify the effectiveness of the derived formulas by referring to the problem of the weak influence 

of gravity on drop spreading over a horizontal surface. In the gravitational field, we have pn = pgh + const. 
Substituting pn into (2.16), we find the wetting angle a~ for a heavy drop: 

ct~ = ao + B sin ao pgr2o 
6"(l+cosao) 2' B=..a 

This formula corresponds to the first term a~ of the expansion with respect to the Bond number B = 0, and 
one can use it to allow for the weak effect of gravity on drop spreading. 

When the contact line moves along the solid, the asymptotics of the stress pn as 8 --. 00 (h --+ 0) is 
universal: 

2 
p= = ~ ~ 0 Q ( ~ )  sin ~ + . . . .  

The divergences in the integrals (1.14)-(2.16) correspond to this expression; separating them, we can write 

{ o0 } 
a -  cro = Ca2Q(a0) - In ~- + C1 + . . . .  (2.17) 

For the three cases, we express the values of the constant Cz in (2.17) in terms of the function @, which 
contains the dimensionless stress P (2.8): 

r = P(8) 1 Ro sin cto. 
2Q(~o) h 

Here 

Case No. 1: 

Case No. 2: 

a o  

/ ~osO {r162 sinoer (2.1s) 
CI = 1  sinao cosao 

tan2~a0/2)ln(1 + X) 
= a o _  cosa0 [~(2) + dx]} w . ;  

0 

E ( oo)]} O tan-~- r sin0d0; (2.19) 1 c o s 0 - ( l + c o s a o )  1 - c o s 0 1 n  cot~ 
+ sin ao 

0 

ao 

1 / (2 h -X)@(h) dh (2.20) Case No. 3: C l = 2 + s i n a 0  ao ~ "  

In (2.19), ~(z) is the Riemann zeta function; the first term in (2.19) equals 1.645 as a0 ~ 0 and 1.693 for 
a0 = r/2,  i.e., in practice it is independent of a0. 

Correlating (2.17) with the asymptotic condition (1.3) at the drop edge, we have 

ao = a(ho), h0 = a0exp (-C1), (2.21) 

where a(ho) is the inclination angle of the boundary determined by the general asymptotics (1.2). 
Although it is difficult to analytically find the stress p=(O) at arbitrary angles a0 and Reynolds numbers, 

it can be readily calculated since the flow boundary is given. For small angles in the case of creeping motion, 
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the asymptotically exact expression 

[ (h 1) ( 3 ) p,, = pn 0=0 + 2pvoQo sin s0 a0 Q0 sin s0 = 2~0 , s0 << 1 

is known [1]. It follows from this expression and from (2.8) that all the integrals in (2.18)-(2.20) equal zero, 
and the following values of C1 result from (2.21): 

1) C 1 = 1 ;  2) C 1 = r  3) C I = 2 .  (2.22) 

Since In (ho/hm) >> 1, the three dynamic wetting angles an, ab, and ac, which correspond to (2.22), differ 
slightly. For case No. 3, an even more exact solution is known [4]. The value of C1 = 1 was reported in [1], 
and case No. 2 was considered in [8]. 

Among the three angles, the dynamic angle a0 = Orb is of primary importance. This angle is determined 
by the height a0 and radius r0 of the drop base: a0 = r0 tan(a0/2). It can be easily measured experimentally, 
which is a simpler procedure than the measurements of the local angle and can give more exact data on 
wetting processes. 

The angle a0 = ac can be determined via r0 and the radius R(e ) of a sphere of equivalent volume: 

r0 = 2R(e) cot -~- 1 + 3 cot 2 R(e ) -- ~ (2.23) 

In combination with the dependence of the velocity v0 on the angle a0 and the parameter h0, which is known 
from (2.21) and (1.2), differentiation of (2.23) with respect to time t yields the following equation of drop 
spreading [1]: 

d a 0 _  v0 (2+coscr0) sin , s0--ere,  vo=vo(~o, ho). (2.24) 
dt R(~) 

The solution of s0(t) in this equation determines the dependence to(t). Formula (2.24) holds true for creeping 
motion. For a finite Reynolds number, Eq. (2.24) should be solved together with the problem of a nonstationary 
flow inside a spheroidal segment. For a sufficiently large Reynolds number, the expression for v0 depends not 
only on the instantaneous value of s0, but also on the flow prehistory affecting the value of C1, which 
contributes only slightly to the solution as long as the spheroidal approximation for the interface model 
is valid. This approximation is violated for a sufficiently large Reynolds number (Re >> 1) or finite Bond 
numbers. As the drop spreads over the surface, the Reynolds number decreases: the drop "forgets" not only 
the initial conditions, but also the inertial forces. 

Thus, based on the asymptotic matching method, the free-boundary hydrodynamic problem of drop 
spreading has been reduced to the simpler problem with known boundary. 

Finally, the expediency of formulating the inverse problems of wetting dynamics, i.e., the problems 
of determination of the parameters h~m and am of the asymptotics (1.2) from experimental data for various 
wetting rates, is worth noting. The above formulas can be used to gain refined information on the role of the 
flow on a microscale from experimental data. 

This work was supported by the Russian Foundation for Fundamental Research (Grant No. 96-01- 
01605). 
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